Neural and Fuzzy Neural Networks in Prediction of Natural Gas Consumption
نویسندگان
چکیده
In this work several approaches to prediction of natural gas consumption with neural and fuzzy neural systems are analyzed and tested. The data covers daily natural gas load in two different regions of Poland. Prediction strategies tested in the paper include: single neural net module approach, combination of three neural modules, temperature context based method, and application of fuzzy neural networks. The results indicate the superiority of temperature context based method and the modular approach over single neural net and fuzzy neural approaches. One of the interesting issues observed in the paper is relatively good performance of tested methods in the case of long-term (four week) prediction compared to mid-term (one week) prediction. Generally, the results are superior to those obtained by linear and quadratic regression models and by statistical methods currently used for this task in the gas company under consideration.
منابع مشابه
The Forecasting of Iran Natural Gas Consumption Based On Neural-Fuzzy System Until 2020
In this paper, an Adaptive-Network-based Fuzzy Inference System (ANFIS) is used for forecasting of natural gas consumption. It is clear that natural gas consumption prediction for future, surly can help Statesmen to decide more certain. There are many variables which effect on gas consumption but two variables that named Gross Domestic Product (GDP) and population, are selected as two input var...
متن کاملShort-term and Medium-term Gas Demand Load Forecasting by Neural Networks
The ability of Artificial Neural Network (ANN) for estimating the natural gas demand load for the next day and month of the populated cities has shown to be a real concern. As the most applicable network, the ANN with multi-layer back propagation perceptrons is used to approximate functions. Throughout the current work, the daily effective temperature is determined, and then the weather data w...
متن کاملPrediction of methanol loss by hydrocarbon gas phase in hydrate inhibition unit by back propagation neural networks
Gas hydrate often occurs in natural gas pipelines and process equipment at high pressure and low temperature. Methanol as a hydrate inhibitor injects to the potential hydrate systems and then recovers from the gas phase and re-injects to the system. Since methanol loss imposes an extra cost on the gas processing plants, designing a process for its reduction is necessary. In this study, an accur...
متن کاملPrediction of pore facies using GMDH-type neural networks: a case study from the South Pars gas field, Persian Gulf basin
The current study proposes a two-step approach for pore facies characterization in the carbonate reservoirs with an example from the Kangan and Dalanformations in the South Pars gas field. In the first step, pore facies were determined based on Mercury Injection Capillary Pressure (MICP) data incorporation with the Hierarchical Clustering Analysis (HCA) method. In the next step, polynomial meta...
متن کاملModeling environmental indicators for land leveling, using Artificial Neural Networks and Adaptive Neuron-Fuzzy Inference System
Land leveling is one of the most important steps in soil preparation and cultivation. Although land leveling with machines requires considerable amount of energy, it delivers a suitable surface slope with minimal soil deterioration as well as damage to plants and other organisms in the soil. Notwithstanding, in recent years researchers have tried to reduce fossil fuel consumption and its delete...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural Parallel & Scientific Comp.
دوره 13 شماره
صفحات -
تاریخ انتشار 2005